Global peak water limit of future groundwater withdrawals (2024)

References

  1. Abbott, B. W. et al. Human domination of the global water cycle absent from depictions and perceptions. Nat. Geosci. 12, 533–540 (2019).

    Article CAS Google Scholar

  2. Qin, Y. et al. Flexibility and intensity of global water use. Nat. Sustain. 2, 515–523 (2019).

    Article Google Scholar

  3. Postel Sandra, L., Daily Gretchen, C. & Ehrlich Paul, R. Human appropriation of renewable fresh water. Science 271, 785–788 (1996).

    Article Google Scholar

  4. Vörösmarty Charles, J., Green, P., Salisbury, J. & Lammers Richard, B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    Article Google Scholar

  5. Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).

    Article CAS Google Scholar

  6. Gleick, P. H. Transitions to freshwater sustainability. Proc. Natl Acad. Sci. USA 115, 8863–8871 (2018).

    Article CAS Google Scholar

  7. Liu, L. et al. Quantifying the potential for reservoirs to secure future surface water yields in the world’s largest river basins. Environ. Res. Lett. 13, 044026 (2018).

    Article Google Scholar

  8. Aeschbach-Hertig, W. & Gleeson, T. Regional strategies for the accelerating global problem of groundwater depletion. Nat. Geosci. 5, 853–861 (2012).

    Article CAS Google Scholar

  9. Gleeson, T., Cuthbert, M., Ferguson, G. & Perrone, D. Global groundwater sustainability, resources, and systems in the Anthropocene. Annu. Rev. Earth Planet. Sci. 48, 431–463 (2020).

    Article CAS Google Scholar

  10. Wada, Y. & Bierkens, M. F. P. Sustainability of global water use: past reconstruction and future projections. Environ. Res. Lett. 9, 104003 (2014).

    Article Google Scholar

  11. Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).

    Article CAS Google Scholar

  12. Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour. Res.https://doi.org/10.1029/2011WR010562 (2012).

  13. Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).

    Article Google Scholar

  14. Konikow, L. F. & Kendy, E. Groundwater depletion: a global problem. Hydrogeol. J. 13, 317–320 (2005).

    Article CAS Google Scholar

  15. Siebert, S. et al. Groundwater use for irrigation—a global inventory. Hydrol. Earth Syst. Sci. 14, 1863–1880 (2010).

    Article Google Scholar

  16. Grogan, D. S., Wisser, D., Prusevich, A., Lammers, R. B. & Frolking, S. The use and re-use of unsustainable groundwater for irrigation: a global budget. Environ. Res. Lett. 12, 034017 (2017).

    Article Google Scholar

  17. Aquastat Database (FAO, accessed 5 June 2022); https://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en

  18. Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

    Article CAS Google Scholar

  19. Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

    Article CAS Google Scholar

  20. Dolan, F. et al. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. 12, 1915 (2021).

    Article Google Scholar

  21. Birnbaum, A., Lamontagne, J., Wild, T., Dolan, F. & Yarlagadda, B. Drivers of future physical water scarcity and its economic impacts in Latin America and the Caribbean. Earths Future 10, e2022EF002764 (2022).

    Article Google Scholar

  22. Seppelt, R., Manceur, A. M., Liu, J., Fenichel, E. P. & Klotz, S. Synchronized peak-rate years of global resources use. Ecol. Soc. 10.5751/ES-07039-190450 (2014).

  23. Hubbert, M. K. Nuclear Energy and the Fossil Fuels Vol. 95 (Shell Development Company, Exploration and Production Research Division, 1956); http://www.energycrisis.com/Hubbert/1956/1956.pdf

  24. Meinert, L. D., Robinson, G. R. & Nassar, N. T. Mineral resources: reserves, peak production and the future. Resources https://doi.org/10.3390/resources5010014 (2016).

  25. Ericsson, M. & Söderholm, P. Mineral Depletion and Peak Production 222–231 (Palgrave Macmillan, 2013);https://doi.org/10.1057/9781137349149_12

  26. Gleick, P. H. & Palaniappan, M. Peak water limits to freshwater withdrawal and use. Proc. Natl Acad. Sci. USA 107, 11155–11162 (2010).

    Article CAS Google Scholar

  27. Turner, S. W. D., Hejazi, M., Yonkofski, C., Kim, S. H. & Kyle, P. Influence of groundwater extraction costs and resource depletion limits on simulated global nonrenewable water withdrawals over the twenty-first century. Earths Future 7, 123–135 (2019).

    Article Google Scholar

  28. Calvin, K. et al. Gcam v5.1: representing the linkages between energy, water, land, climate, and economic systems. Geosci. Model Dev. 12, 677–698 (2019).

    Article CAS Google Scholar

  29. Gleeson, T. et al. The water planetary boundary: interrogation and revision. One Earth 2, 223–234 (2020).

    Article Google Scholar

  30. Graham, N. T. et al. Future changes in the trading of virtual water. Nat. Commun. 11, 3632 (2020).

    Article CAS Google Scholar

  31. Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article Google Scholar

  32. van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5 (2011).

    Article Google Scholar

  33. Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115, E1080–E1089 (2018).

    Article CAS Google Scholar

  34. Perrone, D. & Jasechko, S. Deeper well drilling an unsustainable stopgap to groundwater depletion. Nat. Sustain. 2, 773–782 (2019).

    Article Google Scholar

  35. Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E. & Cardenas, M. B. The global volume and distribution of modern groundwater. Nat. Geosci. 9, 161–167 (2016).

    Article CAS Google Scholar

  36. de Graaf, I. E. M. et al. A global-scale two-layer transient groundwater model: development and application to groundwater depletion. Adv. Water Resour. 102, 53–67 (2017).

    Article Google Scholar

  37. Konikow, L. F. Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys. Res. Lett. https://doi.org/10.1029/2011GL048604 (2011).

  38. Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. https://doi.org/10.1029/2010GL044571 (2010).

  39. Huang, Z. et al. Global agricultural green and blue water consumption under future climate and land use changes. J. Hydrol. 574, 242–256 (2019).

    Article Google Scholar

  40. Fitton, N. et al. The vulnerabilities of agricultural land and food production to future water scarcity. Glob. Environ. Change 58, 101944 (2019).

    Article Google Scholar

  41. Turner, S. W. D., Hejazi, M., Calvin, K., Kyle, P. & Kim, S. A pathway of global food supply adaptation in a world with increasingly constrained groundwater. Sci. Total Environ. 673, 165–176 (2019).

    Article CAS Google Scholar

  42. van Vuuren, D. P. et al. The shared socio-economic pathways: trajectories for human development and global environmental change. Glob. Environ. Change 42, 148–152 (2017).

    Article Google Scholar

  43. O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

    Article Google Scholar

  44. Graham, N. T. et al. Water sector assumptions for the shared socioeconomic pathways in an integrated modeling framework. Water Resour. Res. 54, 6423–6440 (2018).

    Article Google Scholar

  45. Hejazi, M. I. et al. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies. Hydrol. Earth Syst. Sci. 18, 2859–2883 (2014).

    Article Google Scholar

  46. Hejazi, M. I. et al. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating. Proc. Natl Acad. Sci. USA 112, 10635–40 (2015).

    Article CAS Google Scholar

  47. Heistermann, M. Hess opinions: a planetary boundary on freshwater use is misleading. Hydrol. Earth Syst. Sci. 21, 3455–3461 (2017).

    Article Google Scholar

  48. Rockström, J. et al. Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resour. Res. https://doi.org/10.1029/2007WR006767 (2009).

  49. Jägermeyr, J., Pastor, A., Biemans, H. & Gerten, D. Reconciling irrigated food production with environmental flows for sustainable development goals implementation. Nat. Commun. 8, 15900 (2017).

    Article Google Scholar

  50. D’Odorico, P. et al. The global food–energy–water nexus. Rev. Geophys. 56, 456–531 (2018).

    Article Google Scholar

  51. Wada, Y. et al. Modeling global water use for the 21st century: Water Futures and Solutions (WFAS) initiative and its approaches. Geosci. Model Dev. 9, 175–222 (2016).

    Article Google Scholar

  52. Byers, E. et al. Global exposure and vulnerability to multi-sector development and climate change hotspots. Environ. Res. Lett. 13, 055012 (2018).

    Article Google Scholar

  53. Miralles-Wilhelm, F. Water is the middle child in global climate policy. Nat. Clim. Change 12, 110–112 (2022).

    Article Google Scholar

  54. Gleick, P. H. Global freshwater resources: soft-path solutions for the 21st century. Science 302, 1524–1528 (2003).

    Article CAS Google Scholar

  55. Zhao, X., Calvin, K. V., Wise, M. A. & Iyer, G. The role of global agricultural market integration in multiregional economic modeling: using hindcast experiments to validate an Armington model. Econ. Anal. Policy 72, 1–17 (2021).

    Article Google Scholar

  56. Bryant, B. P. & Lempert, R. J. Thinking inside the box: a participatory, computer-assisted approach to scenario discovery. Technol. Forecast. Soc. Change 77, 34–49 (2010).

    Article Google Scholar

  57. Gleeson, T. et al. GMD perspective: the quest to improve the evaluation of groundwater representation in continental- to global-scale models. Geosci. Model Dev. 14, 7545–7571 (2021).

    Article Google Scholar

  58. Wada, Y. et al. Human–water interface in hydrological modelling: current status and future directions. Hydrol. Earth Syst. Sci. 21, 4169–4193 (2017).

    Article CAS Google Scholar

  59. Niazi, H. et al. Large ensemble dataset for discovering global peak water limit of future groundwater withdrawals using 900 GCAM runs. Zenodo https://doi.org/10.5281/zenodo.6480465 (2023).

  60. Niazi, H. Meta-repository for groundwater peak and decline: JGCRI/niazi-etal_2024_nature-sustainability: v1-accepted. Zenodo https://doi.org/10.5281/zenodo.10524993 (2024).

  61. Kim, S. H. et al. Balancing global water availability and use at basin scale in an integrated assessment model. Clim. Change 136, 217–231 (2016).

    Article Google Scholar

  62. Hejazi, M. et al. Long-term global water projections using six socioeconomic scenarios in an integrated assessment modeling framework. Technol. Forecast. Soc. Change 81, 205–226 (2014).

    Article Google Scholar

  63. Liu, Y., Hejazi, M., Li, H., Zhang, X. & Leng, G. A hydrological emulator for global applications—HE v1.0.0. Geosci. Model Dev. 11, 1077–1092 (2018).

    Article Google Scholar

  64. Vernon, C. R. et al. A global hydrologic framework to accelerate scientific discovery. J. Open Res. Softw. 10.5334/jors.245 (2019).

  65. Richts, A., Struckmeier, W. F. & Zaepke, M. WHYMAP and the Groundwater Resources Map of the World 1:25,000,000 159–173 (Springer, 2011); https://doi.org/10.1007/978-90-481-3426-7_10

  66. Gleeson, T., Moosdorf, N., Hartmann, J. & van Beek, L. P. H. A glimpse beneath earth’s surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity. Geophys. Res. Lett. 41, 3891–3898 (2014).

    Article Google Scholar

  67. de Graaf, I. E. M., Sutanudjaja, E. H., van Beek, L. P. H. & Bierkens, M. F. P. A high-resolution global-scale groundwater model. Hydrol. Earth Syst. Sci. 19, 823–837 (2015).

    Article Google Scholar

  68. Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

    Article CAS Google Scholar

  69. Kyle, P. et al. Assessing the future of global energy-for-water. Environ. Res. Lett. 16, 024031 (2021).

    Article CAS Google Scholar

  70. Cui, R. Y. et al. Regional responses to future, demand-driven water scarcity. Environ. Res. Lett. 13, 094006 (2018).

    Article Google Scholar

  71. Liu, L., Hejazi, M., Iyer, G. & Forman, B. A. Implications of water constraints on electricity capacity expansion in the United States. Nat. Sustain. 2, 206–213 (2019).

    Article Google Scholar

  72. Giuliani, M., Lamontagne, J. R., Hejazi, M. I., Reed, P. M. & Castelletti, A. Unintended consequences of climate change mitigation for African river basins. Nat. Clim. Change 12, 187–192 (2022).

    Article Google Scholar

  73. Lempert, R. J. A new decision sciences for complex systems. Proc. Natl Acad. Sci. USA 99, 7309–7313 (2002).

    Article CAS Google Scholar

  74. Lamontagne, J. R. et al. Large ensemble analytic framework for consequence-driven discovery of climate change scenarios. Earths Future 6, 488–504 (2018).

    Article Google Scholar

  75. Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

    Article CAS Google Scholar

  76. Turner, S. W., Ng, J. Y. & Galelli, S. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model. Sci. Total Environ. 590, 663–675 (2017).

    Article Google Scholar

  77. Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).

    Article CAS Google Scholar

  78. Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    Article CAS Google Scholar

  79. Clarke, L. et al. Effects of long-term climate change on global building energy expenditures. Energy Econ. 72, 667–677 (2018).

    Article Google Scholar

  80. Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T. & Eicker, A. Global‐scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 50, 5698–5720 (2014).

    Article Google Scholar

  81. Hanasaki, N., Yoshikawa, S., Pokhrel, Y. & Kanae, S. A global hydrological simulation to specify the sources of water used by humans. Hydrol. Earth Syst. Sci. 22, 789–817 (2018).

    Article Google Scholar

  82. Pokhrel, Y. N. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci. 5, 389–392 (2012).

    Article CAS Google Scholar

  83. Pokhrel, Y. N. et al. Incorporation of groundwater pumping in a global Land Surface Model with the representation of human impacts. Water Resour. Res. 51, 78–96 (2015).

    Article Google Scholar

  84. van Dijk, A. I. J. M., Renzullo, L. J., Wada, Y. & Tregoning, P. A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble. Hydrol. Earth Syst. Sci. 18, 2955–2973 (2014).

    Article Google Scholar

  85. Wada, Y. Past and future contribution of global groundwater depletion to sea‐level rise. Geophys. Res. Lett. 39, L09402 (2012).

    Article Google Scholar

  86. Yoshikawa, S., Cho, J., Yamada, H. G., Hanasaki, N. & Kanae, S. An assessment of global net irrigation water requirements from various water supply sources to sustain irrigation: rivers and reservoirs (1960–2050). Hydrol. Earth Syst. Sci. 18, 4289–4310 (2014).

    Article Google Scholar

  87. Bierkens, M. F. P. & Wada, Y. Non-renewable groundwater use and groundwater depletion: a review. Environ. Res. Lett. 14, 063002 (2019).

    Article Google Scholar

Download references

Global peak water limit of future groundwater withdrawals (2024)

References

Top Articles
Latest Posts
Article information

Author: Fr. Dewey Fisher

Last Updated:

Views: 5269

Rating: 4.1 / 5 (62 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Fr. Dewey Fisher

Birthday: 1993-03-26

Address: 917 Hyun Views, Rogahnmouth, KY 91013-8827

Phone: +5938540192553

Job: Administration Developer

Hobby: Embroidery, Horseback riding, Juggling, Urban exploration, Skiing, Cycling, Handball

Introduction: My name is Fr. Dewey Fisher, I am a powerful, open, faithful, combative, spotless, faithful, fair person who loves writing and wants to share my knowledge and understanding with you.